
Computing the envelope for stepwise constant resource allocations

Nicola Muscettola

NASA Ames Research Center

Moffett Field, California 94035

mus@email.arc.nasa.go',

Abstract

Estimating tight resource level bourds is a fundamental
problem in the construction of flexibl _plans with resource
utilization. In this paper we describe an efficient algorithm
that builds a resource envelope, the rightest possible such
bound. The algorithm is based (,n transforming the
temporal network of resource consuming and producing
events into a flow network with node; equal to the events
and edges equal to the necessary pred{_cessor links between
events. The incremental solution of a staged maximum
flow problem on the network is then used to compute the
time of occmTence and the height of each step of the
resource envelope profile. The staged algorithm has the
same computational complexity of solxing a maximum flow
problem on the entire flow network. This makes this
method computationally feasible for use in the inner loop
of search-based scheduling algorithms.

Introduction

Retaining flexibility in the execution of activity plans is a
fundamental technique for dealing with the uncertain
conditions under which the plans will be executed. For
example, flexible plans allow explici: reasoning about the
temporal uncontrollability of exogenous events (Morris,
Muscettola, Vidal 2001) and tl_e incorporation of
execution countermeasures within the flexible network•

Tightly constrained schedules (e.g., ;,chedules that assign
a precise start and end time to all activities) are typically
brittle and it is very difficult to closely follow their
directions during execution. For an example of what
overly tight schedules can do to an intelligent execution
system, consider the "Skylab strike" (Cooper, 1996), when
during the Skylab 4 mission astronau:s went on a sit-down
strike after 45 days of trying to catch up with the demands
of a fast paced schedule with no roorc fi_r them to adjust to
the space environment.
A major obstacle to building flexible schedules, however,
remains the difficulty of accurately es,timating the amount
of resources that a flexible plan may need across all of its
possible executions. This problem is particularly difficult
for resources with multiple capacity' that can be both
consumed and produced. In the worst case large plans may
exhibit both a high level of activity p_ rallelism and a large
number of required synchronizatior constraints among
activities. Most of the scheduling rmthods available to
date for this problem (Cesta, Oddi Smith, 2000) eventually
produce a fixed activity schedule, even if they make
substantial use of an activity plan s flexibility during
schedule construction.

To appreciate the difficulty of precisely estimating
resource consumption, consider the fact that a flexible
activity plan has an exponential mmber of possible

instantiated schedules. This means that methods based on

complete enumeration are typically out of the question.
Lately, however, new techniques have been developed
CLaborie, 2001) based on direct propagation of
information on the temporal constraints of the plan. This
yields both an upper bound and a lower bound on the
resource level required by the plan over time. This
information can be used in various ways, e.g., to decide
when to backtrack (when the lower/upper bound interval
is outside of the range of allowed resource levels at some
time) and when a solution has been achieved (when the
lower/upper bound interval is inside the range of allowed
resource levels at all times). Bound tightness is extremely
important computationally since both as backtracking and
termination criteria it can save a potentially exponential
amount of search when compared to a looser bound.
A natural question is whether constructing the tightest
possible resource level bounds is computationally feasible.
This paper answers this question in the affirmative. We
describe an efficient algorithm for the computation of a
resource level envelope, a resource level bound such that
for each time there exists at least a schedule for the

activity plan that will consume the amount of resource
indicated by the bound. The algorithm is polynomial, with
complexity equivalent to solving a maximum flow
problem on a flow network of the size of the original
activity plan.
In the rest of the paper we first introduce the formal model
of activity networks with resource consumption. Then we
review the literature on resource contention measures and

show an example in which the current state of the art in
resource level bounds is inadequate. Then we give an
intuitive

resource
between
acti vities
resource
activities
efficient
conclude

understanding of our method to compute the
envelope. Then we establish the connection
maximum flow problems and finding sets of
that have the optimal contribution to the

envelope. We then show that these sets of
compute an envelope. We then describe an
envelope algorithm and its complexity. We
discussing future work.

Activity Networks and Resource Consumption

Figure l shows an activity network with resource
allocations. The network has two time variables per
activity, a start event and an end event (e.g., ex_ and e_ for
activity AI), a non-negative flexible activity duration link
(e.g., [2, 5] for activity A1), and flexible separation links
between events (e.g., [0, 4] from e3, to e40. A time origin,
Ts, corresponds to time 0 and supports separation links to
other events. We assume that all events occur after T_ and

before an event Te rigidly connected to Ts. The interval

TsTe is the time horizon T of the ne work.

<e2,. r>> [2.3] <e___, rz__>

<e_. r.> [2.5] <elc.-rl>/I A: \

?/ A' ,_2. 3]_k4. 0'6] <e.,_. r,> [0, +_J

/ E,,,ol....j

/[1, 41 _'_m_m_V---. _ r0, +oofi

j <e,,,r,,>A, <o.,r.>
T, [30, 30] T:

r, • [1, 4] r:,_ • i-7,-5]

r_l_ [-I,3j r:_:• 1, 3]

r22• [I,2) r_ c 2, a]

Figure 1: An activity network with re._;ource allocations.

Time origin, events and links constitute a' Simple
Temporal Network (STN) (Dechter, Meiri, Pearl 1991).

Unlike :regular STNs, however, each event has an

associated allocation variable with real domain (e.g., ral

for event ea_) representing the amount of resource

allocated when the event occurs We will caIl this

augmented network R a piecewi_;e-constant Resource

allocation STN (cR-STN). In the following we will assume

that all allocations refer to a single, multi-capacity
resource. The extension of the results to the case of

multiple resources is straightforward An event e with

negative allocation is a consumer, while an e + with

positive allocation is a producer.

Note that an event can be either a ccnsumer or a producer

in different instantiations of the allo:ation variables (e.g.,

event ez_ for which the bound for r2_ is [-1, 3]). This

allows reasoning about dual-use activities (e.g., starting a

car and running it both make use of the alternator as a

power consumer or producer). Moreover, some events can

have opposite resource allocation of Xher events (e.g., e_

vs. e_,). This allows modeling reusab e allocations, such as

power consumption by an activity. ',Iote that this model

does not cover continuous accumulat on such as change of

energy stored in a battery over t:me. A conservative

approximation can however be achieved by accounting for

the entire resource usage at the activity start or end. We

will always assume that the cR-STN is temporally

consistent. From the STN theory, this means that the

shortest-path problem associated te R has a solution.

Given two events ex and ez we ¬e with le_e, I the

shortest-path from e_ to e> We will call a full instantiation

of the time variables in R a schedule s(.) where s(e) is the

time of occurrence of event e accordi:lg to schedule s. We

will call S the set of all possible corsistent schedules for

R. Each event e has a time bound [el(e), It(e)], with et(e)
= -leT_l and It(e)= ITse], representing the range of time

values s(e) for all s_ S. Finally, give1 three events, ea, ez

and ea, the triangular inequality le,eal -< I<e,_l +]e2eal
holds.

A fundamental data structure used in the rest of the paper

is the precedence graph, Pred(R), fcr a cR-STN R. This

is defined as a graph with the same events as R and such

that for any two events el and e2 with le_ e2l -< 0 there is a

path fiom et to e., in Pred(R). Alternatively, we can say

that an event e_ precedes another ez in the precedence

gaph if e_ cannot be executed before e2. There are several

possible precedence graphs for a network R, A way to

build one is to run an all-pairs shortest-path algorithm and

retain only the edges with non-positive shortest distance.

Smaller graphs can be obtained by eliminating dominated

edges, e.g., by applying dispatchability minimization

(Tsamardinos, Muscettola, Morris 1998). The cost of

computing Pred(R) is bound by O(VE + V z lg V) where

V is the number of events and E the number of temporal

distance constraints in the original cR-STN. The use of

different precedence graphs may affect algorithm

performance but does not affect the theoretical foundation
described here.

Considering again the activity network in Figure 1, Figure

2 depicts one of its precedence graphs with each event
labeled with the time bound and the maximum allowed

resource allocation.

Resource Contention Measures

Safe execution of a flexible activity networks needs to

avoid resource contention, i.e., the possibility that for

some o.msistent time assignment to the events there is at
least one time at which the total amount of resource

allocated is outside the availability bounds. There are

essentially two methods tbr estimating resource
contention: heuristic and exact. Most of the heuristic

techniques (Sadeh, 1991)(Muscettola, 1994)(Beck et al.,

1997) measure the probability of an activity requesting a

resource at a certain time. This probability is estimated

either analyticaIIy on a relaxed constraint network or

stochastically by sampling time assignments on the full

constraint network. The occurrence probabilities are then

combined in an aggregate demand on resources over time,

the contention measure. Probabilistic contention can give

a measure of likelihood of a conflict occurring. However,

it is not a safe measure, i.e., the fact that it does not

identify any conflict does not exclude the possibility that
the cR-STN could have a variable instantiation with

inconsistent resource allocation. Exact methods avoid this

problem and are based on the computation of sufficient

conditions for the lack of contention. (Laborie, 2001) has a

good survey of such methods. Current exact methods

operate on relaxations of the full constraint network. For

example, edge-finding techniques (Nuijten, 1994) analyze

how an activity can be scheduled relatively to a subset of

activities, comparing the sum of all durations with a time
interval derived from the time bounds of all the activities

under consideration. Relying only, on time bounds ignores

much of the inter-activity flexible constraints and tend to

be effective only when the time bounds are relatively tight.

Therefore algorithms that use these contention measures

tend to eliminate much of the flexibility in the activity

network. (Laborie, 2001) goes further in exploiting the

information about mutual activity, constraints. One of the

two metrics proposed in that paper is the balance

constraint, an event-centered approach that estimates

upper and lower bounds on the resource level immediately
before and after each event e in the cR-STN. These bounds

precisely estimate the contribution of events that must

precedeeandoverestimatethecontributionofeventsthat
mayor maynothappenbeforee. The over-estimate is

obtained considering only the ,aorst-case situation in

which only the events that have the worst contribution

(producers for upper bounds and consumers for lower

bounds) happen before e. Although the balance constraint

better exploits the information in t/-e activity network, the

bounds that it produce may be very loose for networks

with significant amounts of parallel sin.

<[4, 10],3> <[6, 13j, 2>

<[3 9]-4>_k/_--_TC;;:J e
<1,4; 4> ' "Z W_', _ ;_

e__y <[5, 17]. 4>

<[-2, I 1l, -5> </3, 15]. 3>

Figure 2: Precedence graph with tim_/resou rce usage.

For example, consider the activir: graph in Figure 3,

consisting of two rigid chains of n activities with the same

fixed duration and the same fixed activity separation, and

occurring on a horizon T wide _nough to allow any

feasible ordering among them. Each activity has a

reusable consumption of one unit and the resource has two

available units of capacity over time It is clear that all the

executions of this activity network _Ire consistent with the

resource constraint, since the maximum resource

consumption is one unit of capacity for each chain at any

time. However, the balance constraint will always detect
an over-allocation unless the network is further

constrained in one of two ways: a) the start activity n of
one chain occurs no later than the start of the second

activity of the other; or b) more than two activities overlap

and there is an activity k on one chain that must start

between the end of activity i and tte start of activity i+2

on the other chain (Figure 3). These additional constraints

unnecessarily eliminate a large num1_er of legal executions

of the activity network.

The cause of the inability of the balance constraint to

correctly handle this situation depe ids on its inabitity to

account for the constraint structure of parallel chains

simultaneously since it can only take: advantage of the full

structure of the network for chains of predecessors. In this

paper we will show that it is possibL' to effectively use all

precedence constraints in the nelwork simultaneously

leading to the estimate of the best po:,sible upper bound for

resource consumption.

Resource Envelopes

Our approach is to build the tightest possible resource-
centered exact contention measure. This means that for

any possible time value we will compute the maximum

and minimum possible consumptio_ among all possible

schedules of R. Note that the rraximum (minimum)

overall resource level induced by R for any possible

schedule can always be obtained by assigning each

allocation variable to its maximum (minimum) possible

value. For any specific value assigmnent to the allocation

variables, each event has a constant weight: positive, e(e*),

for a producer and negative, -c(e), for a consumer. More

formally, given a schedule seS and a time t • T, E_(t) is

the set of events e such that s(e) _< t. For any subset A of

the set of events in R, E(R), we will call the resource level

increment A(A) =£ _A c(e+) - c(e). The increment is

also defined for the empty set as A(O)=0. Therefore, the

resource level at time t due to schedule s is Ls(t) =

A(E_(t)). The maximum resource envelope at time t is

L,,_=(t) = ma-N_s (L._(t)). Similarly, the minimum resource

envelope at time t is L,,_,(t) = min_s (L,(t)). Our goal is

to compute both L,,_ and L,,i, over T.

A2..

-,7=:,/,

Figure 3: Over-constraining of activity network flexibility.

In the following sections we will rigorously develop an

efficient algorithm to compute envelopes. Here, we want

to give an intuitive account of what is involved and of the

key complexity of envelope computation by analyzing

some simple examples.

First consider a single activity with a reusable allocation

(Figure 4(a)). We could build the envelope L,_. by asking

at each time teT whether A_ can happen before, after or

can overlap t. If the activity starts with a resource

production (Figure 4(b)), then we want A_ to start, contain

or end at t. This is always possible between et(e_s) and

lt(%_). During this interval the resource envelope is 1

while outside of it it is 0. Conversely, if A1 starts with a

consumer (Figure 4(c)), then we want for the activity to

happen completely before or after t. This is possible only

before lt(el_) and after et(el_). The envelope will be 0 at

every time except between It(eta) and et(el_) where it will

be -1. This suggests a strategy that looks at each event and

considers the incremental contribution of the event's

weight to the envelope at the earliest time for producers or
at the latest time for consumers.

When computing L,,,, for a complex network, however,

events cannot usually be scheduled independently.

Consider the simplest network, i.e., a rigidly linked pair of

activities with a reusable resource allocation (Figure 5(a)).

In this case the time of occurrence of e2_ and e._ are bound

together. Looking at the contribution to the envelope of

each event in isolation, we would want to add the

contribution of e2, as late as possible since it is a

consumer, and the contribution of e3s as early as possible,

since it is a producer. The decision on which time to

choose depends on the total contribution of both events.

The total contribution will be added at lt(e2_) if the total

contribution is a consumption (Figure 5(b)) or at et(e3_) if

the total contribution is a production (Figure 5(c)). Note

that in both cases e2_ and e,_ are pending at the selected

time, i.e., their contribution has not been added yet to the

envelope but they both could occur at the selected time.

This suggests a strategy that considers all pending events
at either the earliest time or the latest time of some event

and schedule those that either must be scheduled or are

advantageous, i.e., contribute overall with a production of

resource.

Nowconsiderthenetworkin Figulel andtheeventtime
bounds,maximumresourceallocationandprecedence
graphin Figure2. Assumethatwewantto compute
L,mx(3), the maximum envelope at time 3. The set of

events that may be scheduled before, at or after time 3 is

{el_, exe, e3s, %o e4s}. However, of hese only {ele, e3s, e3e,

e4_} are pending since it is advanta;.,eous to consider el_ at
its earliest time 1. The subset of events that we could

consider at time 3 are all those that will have to occur at or

before 3 assuming that we select fcr some set of events to

occur at 3. These subsets are {e3,}, {el_}, {e3e, e3s} and {e4_,

exe, eae, eas}. Unfortunately, each)f these subsets has a

negative weight and therefore none of them is considered

at time 3. At time 4 the set :)f pending events is

augmented with ezs and the total c)ntribution of the new

subset of pending events {e2,, e4s, e>, e3_, e3s} is positive.

<[0.31, r_> <[5, t0], n>

els AI eje

(a)

1

i[o_.-

(b) ,c)

Figure 4: Maximum resource envelnp_, for a single activity.

The selection of a maximally advar tageous subset among

the pending events is the key source of complexity of
envelope calculation. An exhaustive enumeration of all

subsets can obviously be very expensive. Fortunately we

can make very good use of the information in the

precedence _aph. It turns out _hat this problem is

equivalent to a maximum flow p oblem solved on an

appropriate auxiliary flow network built on the basis of

Pred(R). We will discuss this rigor(,usly in the rest of the

paper.

Calculating Maximum Resource

Level Increme ats

Consider now an interval H_cT. We can partition aJ1

events in R into three sets depencing on their relative

position with respect to H: 1) the closed events Cn with

all events that must occur strictly before or at the start of

H, i.e., such that that It(e) <_ start(H); 2) the pending

events Ra with all events that can occur within or at the

end of interval H, i.e., such that It(e _ > start(H) and et(e)

< end(H); and 3) the open events Oa with all events that

must occur strictly after H, i.e., such that et(e) > end(H).

The set Rn could contain events tidal can be scheduled

both inside and outside H. If H=T, then CT= _, RT =

E(R) and On=O. The interval H could be reduced to a

single instant of time, i.e., H=[t, t] In this case we will

use the simplifying notation Ct=((ft, tl, Rt=Rtt. tl and

Ot=O[t, tl-

We are interested in a particular kind of subset of Rn.

Assume that we wanted to compu e the resource level

increment for a schedule s at a time t_ H. This will always

include the contribution of all evenv_ in Ca and none of

those in On irrespective of s and t. With respect to the

events in Rm we can see that if an event is scheduled to

occur at or before t then all of its predecessors (according
to Pred(R)) will also have to occur at or before t. In other

words, it is possible to find a set of events X ff Rn such

that the events ep_RR that are scheduled no later than t in

s are those such that lexepl _< 0 for some e_ E X. We call

this the predecessor set of X, Px. Therefore, the resource

level at time t for a given schedule s is the sum of the

weights of events in Cn and in Px.

<[0,3],rl> <[4,10],-rl> <[5, ll],r2><[N, 14],-r2>

e2_ A, e2¢ [1, l] e._, As e3.

(a)

(b) (c)

Figure 5: Maximum envelope for two chained activities.

It is easy to verify that given two predecessor sets Px and

Py, both Px _ Pv and Px uPv are also predecessor sets.

Resource Level Increments and Maximum Flow

Since we are interested in the maximum resource level we

want to find the predecessor set with maximum resource

level increment. We will do so by finding a maximum

flow for an auxiliary flow network built from Ru and

Pred(R).

Resource Increment Flow Problem: Given a set of

pending events R_i for a cR-STN R, we define the resource

increment flow problem F(RH) with source o'and sink ras

follows:
1. For each event e E RH there is a corresponding node

e cF(Rn).

2. For each event e + _Ru, there is an edge cr---) e ÷ with

capaci_ c(e+).

3. For each event e- E R_, there is an edge e---)'t" with

capaci_ c(e), i.e., the opposite of e-'s weight in R .

4. For each pair of e_ and e2 with an edge el--pe2 in the

precedence graph Pred(R), there is a corresponding

link el--Pe 2 in F(Rn) with capacity +oo,

................................;:::::::::::::::::::":::.iiiiill..............
,,---..-..,:........

/ \ +c%..-,.ff711"_ _ "".. "...

/ e,v-., _- / _ _"-.. "..'..

t_ & e'°I>-..-'_ _)'::::.,
t_. 5 _ +_/..,/'x,..._ . _ :ps

"-,, / ,x/
",.., ",,\ J_.'_Z.3

"-..'"------'>K_-- _....---÷_ ,./
"_" --.. _ e ;_7" 1-"1 .Y'

a---..
Internal flow (precedence constraints)

................... Incoming flow (producer events)

.... Outgoing flow (consumer events)

Figure 6: Resource increment flow problem.

As an example, Figure 6 shows the auxiliary flow problem
for RT relative to the activity network: in Figure 1.
A detailed discussion of flow problems is beyond the scope
of this paper (for a complete treatment see (Cormen,
Leiserson, Rivest 1990). Here we highlight some
fundamental concepts and relations that we will use. We
will indicate as f(el, ez) the flow associated to a link
ev--+e2 in F(Ra). The flow functicn is skew-symmetric,
i,e., f(e2, el) = - f(eu e2). Each flow has to be not greater
than tbe capacity of the link to which it is associated. For
example, referring to the flow netwcrk in Figure 6, 0 _<f(o',

e2e) < 2, 0 -< t'(eae, x) _<4 and f(e4_ e40 > 0. Note that a
flow from el to e., can be negative only if the flow network
contains an edge e2--+ea with posit.ve capacity. We also
use an implicit summation notation f(A, B), where B and
A are disjoint event sets in F(RH), te indicate the flow f(A,
B) = £a_aZbGnf(a, b). Consider now any subset of events
ACRn and let us call A_A.the set of events A = RH-A. The
following flow balance constraint always holds: f({o'}, A)
= f(A, {'r}) + f(A, A). The total netu ork flow is defined as
f({o'}, RI0 = f(Rn, {z}). The maximum flow of a network
is a function f,,,,_ such that the t:)taI network flow is
maximum.

The fundamental concept used by all known maximum
flow algorithms is the residual network. This is a flow
network with an edge for each pair ff nodes in F(RH) for
which the residual capacity, i.e., t[_e difference between
edge capacity and flow, is positiw'. Each edge in the
residual network has capacity ecual to the residual
capacity. For example, considering he network in Figure
6, assume that f(e_, _) = 3 and fro, e.,_) = 2. The residual
network for that flow will have the]owing edges: e_--_z
with capacity 1, '_-+ele with capacizy 3 and e2e--ro with
capacity 2. Also note that any residual network for any
flow of F(R_0 will always have an edge of infinite capacity
for each edge in the precedence _aph Pred(R).
In this paper we will make use of three different kinds of
paths in the residual network. The f rst is an augmenting
path connecting cr to "_. The existence of an augmenting
path indicates that additional flow c m be pushed from cr
to x. Several maximum flow al[orithms operate by
searching for augmenting paths. Alternatively, the lack of
an augmenting path is the condition that indicates that a
flow is a maximum flow. The second kind of path is a
flow-shifting path, a loop connecting r to z which does not
affect the overall flow in the netwo: k. Finally, the third
kind is a reducing path, i.e., a path _'om x to a. Pushing
flow through a reducing path reduces a network's flow.
We now establish the relation between the resource level

increment A(A) and any flow in F, Rr0. We define the
producer weight in A as c(A +) = Z_÷ e A c(e ÷) and the
consumer weight in A as e(A) = Y__e A e(e-). We also
define the producer residual in A as r(A +) = c(A ÷) -

f({a}, A), i.e., the total residual capacity of the edge
incoming A from s, and the consumer residual in A as
r(A') = e(A) - f(A, {'_}). The followir g relation holds.

Lemma 1: A(A) = r(A +) - r(A') + f(A, A).
Proof.. A(A) = e(A') - e(A) = (c(h +) - f({cr}, A)) - (c (A
) - f(fcr}, A)) = r(h +) - (c(A) - f(a, {'c}) - f(A, _) =
r(A +) - r(A) + f(A, A.A).[]

We now focus on predecessor sets such as Px.

Lenuna 2: f(Px, P_x) -_ O. Moreover, f(Px, Lt)=O if and
only if f(el, e2)=O for each el ff_v and e2ffPx.
Proof." From the definition of predecessor there is no edge
ez_el in F(Rn) with e_P_P.x and e2ePx. Therefore, f(e2,
el) _< 0 and f(Px, P_P_x)-< 0. The second condition can be
demonstrated by observing that the sum of any number of
non-positive numbers is 0 if and only if each number is 0.
_3

Another way to express Lemma 2 is that f(Px, P_x)=0 if
and onIy if there is no link el--+e2 in the residual network
where ele P_xand e:_ Px.

Corollary 1: A(Px) -<r(Px ÷) - r(Px).
Proof" [mmediate from Lemma I and Lemma 2.

IVlaximum flows and maximum resource level

increments

We are now ready to find the maximum positive resource
level increment. Note that we are not interested in event

sets with negative resource increments since; as we
discussed before, we will only account for events in our
resource envelope simulation if they have a positive
contribution. If they do not, we will take them into account
when we must, i.e., when their temporal upper bound
becomes lower or equal to the current simulation time.
First we address the problem of whether Ru contains a set
of predecessors P* with positive resource level increment,
i.e., A(P*) > 0. To do so we will make use of a maximum
flow f_,, of F(Ru). We will indicate with r,,_,x(A)
producer/consumer residual computed for f,,,,,,. The
following fundamental theorem holds.

Theorem 1: Given a partial plan Rm there is a
predecessor set P* such that A(P*)>O if and only if
r,,_(RH +) > O.
Proof [7 : We prove that if there is a P" such that A(P*)>
0, then r (RH +) > 0. Assume that r,_(Ra ÷) = 0. This
means that for any predecessors subset Px we have
r,,_,(Px _) = 0. From Lemma 2 we would have A(P*) <
-r,,_(P*) _<0, that is a contradiction.
e=: We prove that if rn=_(Rn ÷) > 0 then we can identify a
P" such that A(P')>0. If rn_(Rn +) is positive, there must
be some e +such that r,,,,(e +) > 0. Let's select P" as the set
of events reachable by some path in the residual network
originating from e +. The following three properties hold.
1. P. is a predecessor set.

If not, there will be an event e: _ P* such that Me21 -<0
for some event e_eP*. From the definition of Pred(R),

however, we know that there must be a path in Pred(R)
from el to e2. Since this path will be present in F(RH)
with all links having infinite capacity, the path will also
always be present in any residual network for any flow.
Therefore there is a path in the residual network going
from e+ to e_ to e2 and e2_P*, which is a contradiction.

2. r,,_(P *) = O.
If not, there will be an event e _ P* such that ru,a_(e) >

0. We can therefore build an augmenting path of F(RH)
as follows: i) an edge o'--+e* with positive residual
capacity r,,,a_(e+); 2) a path in the residual network from

e+toe, whichexistsbydefinitio_ofP";and3)anedge
e--_'_withresidualcapacityr=m(e).Theexistenceof
theaugmentingpathmeansthatf,,,_isnotamaximum
flow,whichisacontradiction.

3.f,=.o'; £3 = 0
Since P* is a predecessor set, from the proof of Lemma

* * < * • .2 we know that f,_,,,,(P, P_ _ 0]f f,_,,(P, P) < 0, ,t
means that there is a pair of events ex_ P* and e2ti_P*

such that f_,_._(eb ez) < 0. This r_eans that the residual
capacity from el to e2 is positive and therefore there is

an edge el--+e2 in the residual network. But this means
that esE P, which is a contradicti m.

Applying the properties of P* to the relation in Lemma 1
we obtain A(P*) = r=x (P*+)- r (P) + f,,,,dP, P._ =
r,,_(P *÷)>_r_.(e +) > O.

It is now easy to find the predecessor set P,,m with
maximum positive resource level in,:rement.

Theorem 2: Consider all event, e+_ ERe such that
r,,,,(e÷i) > 0 and consider the eveJ_t set P_= = _e+i P*i

* ÷
where P i is the set of events rea,'hable from e i in the
residual network of f_,. Then P,,= is a set of
predecessors in Rn with ma.vimum zl(P_x) > O.
Proof." Each of the P*i has the properties proved in
Theorem 1. We show that P._= also has those properties.
1.Being the union of predecessor sets, P,_, is also a

predecessor set.
2.We know that r_.,(e) = 0 to,- each e _ P*t. Therefore

r,,_CP,_x) = 0.
3. From Lemma 2 we know that since f(P*_, P*0=0, there is

no flow from events in _P*i to exents in P*i. Therefore
there is also no flow from event_ in P*,,=, = _ P*_ to
events m P Hence, from Lemma 2 f(P
E',_)=O.

Therefore A(P._.) = r,,_.(P+..,.) > O.
Moreover, since by construction P,,_,. contains alI e+i with
rm**(e+3 > 0. Therefore, for any other predecessor set Px it
is r_=,(P÷x) < r,_x(P*,,._). Hence, k(Px) < r,,_,_(P+x) -
r.,..(Px) _<r,,=..(P+x) < r,.a_(P+._) :: A(Pn=0. [3

So far we have constructed Pmax froln a specific maximum
flow for F(RH). However, it turns cut that Pro,, is unique
for all maximum flows of F(RH). N'ioreover P,_ contains
the minimum number of events among all predecessor sets
with maximum positive resource lev .q increment.

Theorem 3: For any solution o p the maximum flow
problem for F(Rn), P,_x is the mi, umal predecessor set
with maximum resource level incren ent A(Pmox).
Proof." Consider the set {f,,_,i} with i=1 , n of all n
different maximum flows of F(RI_). Since each

corresponding P,,_x,i is a maximum)ositive resource level
increment sets, A(Pmax,i) = Amax. Also, given two distinct
maximmn flows i and k, we have Pmax,i = Pi_k t.J Pk-i

where Pic_k= Pmax,i¢"3Pmax.kand Pk-i:: Plr,ax,k - Pmax.i- In the
following we will indicate with q(e) the residual r_=,(e)
computed in flow fn_*.j-
First we observe that for any two dis inct i and k, A(P_k)=
A_. In fact, Pic_k is a predecessor set and ri(Pimk)=

rk(Pic_k')=O. Therefore A(Pic_k)= ri(Pic_k+) = rk(Pic_k'). We

need now to show that r/Pie, k÷) = r (P i+) = ri(P k+) •

In fact, it must be ri(Pk.i+)=0 since Pmax,i must contain all
e+ events with ri(e +) > 0. Also, km,_= ri(Pm,_.i+)=A(P k)

< ri(P k+) - ri(Pmax,k') <-- ri(P k+) which implies
ri(P_.k+)=0. But this means that the flow in A(Pt,-,k) is self
contained, i.e., there is no edge in the residual network of

flow f,_,_ that exits Pink. Therefore, in this flow none of
the events in P,-k is reachable from an e + event and

therefore P_.k=O. With a s3amnetric argument we can see
that P_.i=O. Therefore for any i and k it must be P,,=,,i=
P,,_x,k = Pm,_ The minimality of Pm_, derives from
applying to P,,== - pe the same argument used to
demonstrate that Pi-k is empty, where Pe_P,_ is a
predecessor _aph with maximum positive resource level
increment.

Building Resource Envelopes

So far we know that the resource level at time t _ H for a

given schedule s is the sum of the weights of the events in
CH plus those of the events in some predecessor set Px. It
is not irmnediately obvious that the converse also applies,
i.e., that given any predecessor set Px one can determine a
time tx _ H, the separation time, and a schedule Sx, the
separation schedule, such that all and only the events in
CHuPx are scheduled at or before time ix. The reason this
is not obvious is that events are still constrained by upper
bound constraints, i.e., the metric links that are not
included in Pred(R). Scheduling some event too early
with respect to tx may therefore force some event to occur
before time tx whether the event is a successor in Pred(R)
or not. We will show that indeed we can find a separation
time and schedule for any Px and therefore also for P=,.
For the latter we will show that tx represents one of the
times at which the resource level is maximum over H for

any schedule. This will field the resource envelope Lm_= if
we reduce H to a time t and scan t over the horizon T.

Latest events

The first step is to identify the events in Px that will be
scheduled at time tx. We say that e is a latest event of Px
if it is not a strict predecessor of any other event in Px,
i.e., for any ea E Px, lel el ->0. There must be at least one
latest event in Px. If not, for every event ek S Px, there
would be an event ei c Px such that lei ek I < 0. But this
would mean that it would be possible to create a cycle e_a)
") ell2) -')' ... "_ el(n) linked by links [ei(k)ei(k+l)[< O, which
is a contradiction to the hypothesis of temporal
consistency of R. We will call Pxa,t_ the set of aI1 latest
events in Px. Also, we define Px.early = Px - Px,late-

The following properties hold for the temporal relations
between events in Px, m_, Px, _ly and Px.

Property 1: For any two events ez, e2 E Px, tare, [ele2[20
and le2ell 20.

Property 2: For any two events el _ P_.xand e2 E Px, late_
[e2 es[> O.
If not, ea would belong to Px by the definition of Px.

Property 3: Any event es_ Px,,,_y is a strict predecessor
of some e2 _ Px, to*e,i.e,, lese21 < 0.

If not, consider any two events el,e3 ff Px,e,,ty. For any ez it
would be lezell=0 and leze31=O. Therefore, O=leze31< le,.e_l
+ lete31 = [ete3[, i.e., [e_e3[-> 0. Sinc,_ this would be true for
any pair of events in Px, early and to all distances between
any event in Px, earlr and any event in Px, late, all events in
Px,_a,_r would be latest events, i.e., Px,e,_r=O.

Separation Time for Latest Events

We now show how to construct th.: separation time tx at
which we will schedule all latest events.

Lemma 3: There is a time interval [tr,,,i,, tx,,,,,:d that is in
common among all time bounds let(e), It(e)] with e
Px, l_,, and such that start(H) Stx,,,_
Proof" First, we show that there must be a time value in
common among all time bounds, if not, there would be
two events e_, e,, _ Px,_.te such that et(et) > It(ez). From
the triangular inequality we also have that lexe2[-< - et(el)
+ It(e2) < 0, which is inconsistent with Property 1. Now,
assume start(H) > tx..... By the way the interval [tx, _,,,
tx, ,_x] is constructed, there must exist an event e _ Px, _._te
such that It(e) = tx, .,_. For this ev::nt it would be It(e) <
start(H) that is a contradiction with e belonging to Ra./S

We define tx= max (start(H), tx,,a_, with tx = start(H) if
Px=_, in which case tx = start(B). We can then show
that the time bound of each event in P× indicates that each
of them can be scheduled after tx.

Lemma 4: For any event e ff P_r, lt(,_l) > tx
Proof: By definition of RH it must l_e It(e) > start(H). So
we only need to consider the case in which tx = tx, ,,a, >
start(H). In this case there is at leas: one event et _ P_ _at_
such that et(e0 = tx,,a,. For this event it is let eI < - et(et)
+ It(e). From Property 2 we krow that lel eI > 0.
Therefore, It(e) _>et(el) + le_el > et(el) = tx,,_,._3

Separation schedule for predecessors

We now show how to build a separation schedule Sx for Px
and tx, i.e., a schedule such that Sxl e) < tx for ee CauPx
and sx(e) > tx for eeP_uOx. Ncte that the following
discussion holds also if Px=_.
We will do this with the following algorithm.

1. Schedule all e'_ Px, l.te at tx, i.e, Sx (e') = tx.
2.Propagate time through R obtai ring new time bounds

let'(e), It'(e)] for each e_E(R).
3. Schedule all events e"_ E(R) --Px,_,te at their new

latest time, i.e., sx(e") = It' (e").
To show that Sx is a schedule we need to see that it is
consistent with respect to R, W_ see that step 1 is
consistent since: 1) tx belongs to 1he intersection of all
latest event time bounds; 2) since for any pair of latest

events le_e,,l>0, scheduling one at tx does not prevent any
other latest events to be scheduled a time tx as well. Step
3 above is also consistent since it is always possible to
schedule all events at their latest tines without temporal
repropagation.
Now we need to show that the property defining a
separation schedule is satisfied ft,r Sx. Note that we
already know that it is satisfied fo_ events in Px, late. By
definition of Cn and On, we aIso kt_ow that it is satisfied

for events in these two sets. Therefore, we need to show

that it is satisfied for Px.e,_lr and P_x.
a) It'(e) _<tx for all e _ Px,_.,-Jy

According to Property 3 we can pick an event elE Px,_,te
that [e_ el < 0. From the triangular inequality we have
It'(e) _<It'(el) + le_el < It'(el) = tx.

b)lt'(e) > tx for all ee P_x.
From Lemma 4 we know that before the re-propagation
it was lt(e) > tx. After the propagation, either
It'(el=It(e), in which case the condition is satisfied, or
lt'(el has changed with a propagation starting from
some event et_ Px, late, So it must be lb'(e) = tx + level
and since from Property 2 [ete[> 0, It'(e) > tx.

We can now compute L,_x over the entire time horizon T.
P,_(Rr_) indicates that it is computed over F(Rn).

Theorem 4: The maximum resource consumption for an),
schedule of R over an interval H c'T is given _, A (Cn) +
A(Pm,x(R,_)).
Proof" We know that at any time t6H the events in Rn
that are scheduled before t are a predecessor set Px. For
the resource level at time t it is always A (Cn) + A(Px) < A
(Cn) + A(Pmax(RH)), the latter being the resource level at
the separation time for the separation schedule. This is
true also if P._(RH) is empty.2

There are two interesting special cases of Theorem 4.

Corollary 2: The maximum possible resource
consumption for R over T is equal to A(P,,_(Rr)).

This means that estimating the maximum possible
resource consumption over time has the same complexity
of a maximum flow problem.

Corollary 3: L_(t) = A(Cr)+A(P,,_(R,)).

The last formula tells us ho_ to compute the resource
envelope. We now need to find an efficient algorithm.

Efficient Computation of Resource Envelopes

From Corollary 3, the naive approach to compute a
resource envelope would be to iterate over all possible
t_T. We can improve the running time by considering
that we only need to compute L,,_,, at times when either Ct
or Rt changes. It is easy to see that this can only happen at
et(e) or It(e) for any e_E(R). Therefore we need to re-
compute a maximum flow for a partial network in R only
2n times, a substantial improvement over ITI.
The complexity of some known flow algorithms is
described in Table l(Cormen, Leiserson, Rivest 1990).
Note that the number of edges E is O(V *) where V is the
number of events and 1<___2. Therefore the complexity of
maximum flow algorithm is always O(V _ lgi(V)) with
1<k<5 and j _ {0, 1}. Let us n_w consider the worst case
complexity of re-computing a flow at et(e)/it(e). In the
worst case, Ct will remain empty at all times and the size
of each Rt will increase by 1 f_r each computation of the
flow. Therefore the worst case complexity of this method

is O(Ei=_,...,vO(iklgJ(i))=o(vk*_lgi(V)), a polynomial of
higher order than maximum flow.

We can do better. Assume sorting all earliest and latest

times in ascending order to yield a set {t(1), t(2)

t(2n)}. Suppose now that when we compute the maximum

flow for F(Rt(i)) we make as much use as possible of the

maximum flow for F(Rta-l_). In thi_ case we can come up

with an algorithm with the same worst-case complexity as

computing the maximum flow on the' entire network.

Incremental Change of Pending Events

Before we introduce the algorithm, let us consider the

differences between Rta) and Rtat) (l<i<n). The first

difference _(Ct(i)) = Rt(i-l; - Rtfl) is the sets of events e such

that t(i) = It(e). They must move from Rm.1) to Cta) at time

t(i). The second difference, _(Rt(i)) = Rt(i) - Rt(i.ll are the

events e such that t(i) = et(e). They must move from Ota-1)

to Rt(i) at time t(i).

Figure 7 gives a complete picture of how all relevant event

sets change at time t(i). In this picture E (t0-1)) = Ct(i-lj

w P,,_x(Rta-1)) is the set of events reeded to compute the

resource envelope at time t0-1). E,,,_(t(i)) = Cta) u

Prmx(Rt(i)) is used to compute the resource envelope at time

t(i), with Ct(1) = Ct(im + _(Ct(i)). TI- e difference E,,_(t(i))

- E_x(t(i-1)) can be separated i_to two disjoint sets

8(Ct(i))- P,_.,(Rtnn)) and Pmax(Rt0j) - P,___(R,J-I_). The goal

of the efficient envelope algorithm is to identify the set

P,_(Rt(i)) - P,_dRt(i.1)) with less effort than computing

Pmax(Rt(i)) and P_(Rt04)) with seI:arate maximum flow

computation and then differentiating them.

Ford-Fulkerson OrE

Edmonds-Karp OfV[_")

Simple p_eflow-push O(V2E)

Preflow-push OfV 3

Goldberg-Tarjan O(V[Ig(V2/E))

Table 1: Comple.oty of known maximum flow algorithms

Betbre proceeding notice that Figure 7 assumes that

P,_(Rta)) n Pn_x(Rt(iq)) _ P,_(Rtal). As we will see this

is indeed the case. The consequence of this is that as soon

as P,m_(Rulq_) has been determined and accounted tbr in

the envelope calculation, the submtwork of F(Rtti41)

consisting of all events in Pmax(Rt(i 1)) and all incoming

and outgoing edges can be deleted. This allows the

computation of P,_x(Rui))-Pma_(Rui.t)) directly from the

maximum flow of F(Rt(i)-Pmax(Rt(i.l_)) which can save

significant work.

The second efficiency improvemer;t is computing the

maximum flow of F(Rt(iFPma_(Rt_i-u) by incrementally

modifying the flow of F(Rt(i.1)-Pn_x(Rt0-z;)) during the

deletion of events in 8(Ct(0) and the addition of events in

fi(Rt(i)) while maintaining the maximmn flow property.

Incremental Modification of Maximum Flow

Let us focus on modifications of t/e flow network that

preserve the maximum-flow. To do so we introduce the

concept of a prefix and postfix of t resource increment

flow network F. Consider a partition of events in the

network in two event sets, Post(F) ;md Pref(F). We say

that Post(F) is a postfix of F and Pr_ f(F) is a postfix of F

if for each pair of events e1_Post(F) and e,ePref(F), le,

e_ I > 0. It is immediate to see that for any flow of F it can

only be f(ez, eD<0. Therefore the residual network

contains an edge ez-+ex only if there is an edge et--+e2 in

the flow network and there is a positive f(e_, ez) passing

through it.

We can see that 8(Cta)) is a prefix of F(A) where A is any

subset of Rt(M) that contains 8(Cta)). In fact, consider a

pair of events e2 _ 8(Ct<i)) and et E A - 8(Ctti}). From the

definition of 8(Ct<i)) we have lt(ez) = t and It(e0 _> t+l.

From the triangular inequality' It(et) _< lt(ez) + le2e_I we

can deduce le,. e_l >- lt(e_) - lt(ez) _> t +1- t = 1 > 0. A

similar argmnent applies to demonstrate that _(Rt(it) is a

postfix of F(B) where B is any subset Rt0) that contains

_(Rtfi)).

We now introduce two flow modification operations: flow

reduction and flow expansion.

Ctri.u

.... R_:i_

t i 8(Ra0

P,=_ (R,,i _,)

P_ (R,.))

.... E_(t(i-1))

Figure 7 : Incremental change for set of pending events

Flow contraction: Consider a network F(A), a flow f for

F(A) a_d a prefix of A, Pref(A). Flow contraction consists

of the fi;,llowing two steps:

l)while there is a flow-shifting path in the residual

network connecting an e event in Pref(A) to an e

evozt in A-Pref(A), push flow along the path and

update the residual network accordingly;

2)while there is a reducing path in the residual network

connecting an e event in Pref(A) to an e ÷ event in A-

Pref(A), push flow along the path and update the

residual network accordingl3,.

Lemma 5: If the flow fmo__ is ,zaximum for F(A), flow

contraction produces a maximum flow for F(A-Pref(A)).

Proof' If f,,a_ is maximum, the flow f' produced at the end

of step l is still a maximum flow for F(A). This because

flow shifting does not affect if{s}, A ÷) since no flow is

pushed back through any edge fls, e*). At the end of step 2

we will have a flow f". Note however that any

modification of the residual network in step 2 can only

eliminate existing edges and therefore eliminate paths.

Since f' maximality implies that there are no augmenting

paths in it going to events e_A-Pref(A), there will be no

such augmenting paths in f" either. Therefore f" will be

maximum in F(A- Pref(A)).E]

Note that in achieving the maximum flow for F(A-

PreffA)) it is always better to us flow-shifting paths before

reducing paths, since if flow needs to be moved from

Pref(A) to A-Pref(A) to achieve optimality, a flow-
shifting path is always shorter than the concatenation of a

reducing and an augmenting path.

Flow expansion: Consider a network F(A), a posgix of

A, Post(A)), a flow f for F(A-Pos/(A)). Flow expansion

consists of the following steps:

• while there is an augmenting path in the residual

network ofF(A) connecting aa e*evertt in Post(A) to

an e" event in ,4, push flow aloi_g the path and update

the residt,al network accordingl v.

It is clear that flow expansion prod ices a maximum flow

f,m,, for F(A). Also, if the starting flew for F(A-Pref(A)) is

a maximum flow, flow augmentatio_l will minimize work,

This is important in our application of maximum flow to a

sequence of n F(R,k_) prone ms since re-doing

unnecessary work may negativel?, impact asymptotic

complexity.

Flow Network Reduction

Now we will show that it is always safe to eliminate any

events in Pn_,_(Rt(i-1)) from considera ion once their impact

on L,_,,(t(i-1)) has been recordeJ. Consider the set

8(Ct(1))c_P,,,_(Rtd.1)). The effect of these events is already

included in L (t0-1)) and therefore their contribution

does not need to be included in L (t(i)). Let us now

consider the effect that flow reduc ion applied to these

events has on the maximum flow of }r(Ru_-a) n Rt(j)). From

the property of the predecessor set with maximum

resource level increment, we knov, that f(e_,e2)=0 and

f(e2,el)=O with ex_P__(Rto_z_) md ez_Pm_(Rto-1)).

Therefore, the residual network for the maximum flow of

F(Rt(iq/) does not have any edges ez-)et. Also, since all e

P (Rt0-1)) are saturated (r,_(e)=0), there cannot be

any edge e2--+t in the residual netw>rk. Therefore, there

cannot be any flow shifting and the only way to push flow

back from an e-_ Pnmx(Rt(i.l)). iS tO CO SO through an e+e
P,,,,(Rta-lt). Therefore, flow ch_mges during flow

contraction due to events in Pmax(Rt, iq)) do not affe.ct the
rest of the network.

Consider now Pmax(Rt(i-1))-_)(Ct(1)). We know that after

contraction the flow is maximum for F(Rt(i.l)csRt(i)).

Therefore all e_Pn_x(Rt0.1))-8(Ct(i)) are still saturated.

Also, there will be at least one e+=,-Pmax(Rtfi.1)).-6(Ct(i))

with r._=(e+)>0. If we now add 8(l;_t,i)) and apply flow

expansion, we know that throughout l he process there will

be no augmenting path exiting from e6P_,._,(Rui.

1))-8(Ct(i)). At the end of the process. Pn_ax(Rt0.11)-8(Ct(i))

will still be isolated and th,::refore A(P,_u.,x(Rt(i.

l))--8(Ct(i)))>0° Therefore Pn_ax(Rtll)):).Pmax(Rt0-1))-8(Ct(i)).

Therefore, A(P,_,(Rta._I)) will be par of both Ln=_(t(i-1))

and L (t(i)). Moreover, the presence of P_,(Rt_>I)) has

no effect on the flow modification operations and therefbre

all events in P,_._fRro-I_) together with their incoming and

outgoing edges can be safely elimirated from any flow

network considered by the algorithm after F(Rt0-1)).

Figure 8 shows the pseudocode of the algorithm. Here we

assume that after executing flow conu action, the function
Flow Contraction function also delete., from the network F

the portion pertaining to the events in p.Eolose. Similarly

we expect FlowExpansion to add to F the portion

pertaining to E_. The function NetworkReduction
deletes from the network F the portion pertaining to P_.

Finally, Extract P max finds the Pn,,_ in the maximum

flow of F by collecting the events that are reachable in the

residual network of F from each e* with r,,,..,,(e+)>0.

Complexity Analysis

Now we can show that the complexity of

Resource_Envelope is asymptotically the same as running

a flow algorithm over the flow network F(R) for the entire
cR-STN. We demonstrate this for the Ford-Fulkerson

method. This is the simplest maximum flow method and

tends not to perform well when the internal "pipes" of the
flow network have bottlenecks i Cormen, Leiserson, Rivest

1990). However, this is not true for F(R) in which the

capacity of all internal pipes is +_. Therefore in our case

the Ford-Fulkerson method should perform well. The

comple,dty of Ford-Fulkerson is O(E [f,r_[), where E is

the number of edges in the flow network and lfm_,l is the

amount of the maximum flow pushed through the
network.

Resource_Envelope(R,Pred(R))
{ Lo_a:= O; /' enveloperevelat previousiterationtime "/

P,,_,:= _ /* lemporaryvariableto hold P,.,,.,*/
Envelope:=_; /* envelopeprofile,a list of pairse=<t, L> wheret is the

lime at which Ihe envelope reaches level L. The
envelope stays constanl at L until lhe time of the

followingentryin the list *1

F := ,_; /* auxiliaryflow graphfor F(RLorP,..,,(Rto._))*/
E := {sortedlist in ascendingorderof I of triples<E_o,.,Ep..a,t> whereE._°.o

is theset of eventse in Pred(R)such thatIt{el = t and E,..ais the list
of eventse in Pred(R)such that et(e)= t};

t:=O

while (E is notempty)

{ Eo_, := _;

p :=pop(El;
t := p.t;
F :=Flow Contraction(F, p.E._o,.};

F:= Flow_Expansion(F,p.E,.,,a,Pred(R));

P,.,,,:=Extract_P_max(F);
F := Network_Reduction(F,Pro,,,);

L.,,, :=Lo_a+A(E_o,°)+ A(P.,,,);
Envelope:=append(<t, L.,,,>,Envelope);

Figure 8: Maximum resource envelope algorithm.

Let us consider separately the total cost of the three flow

propagations in Flow_Expansion and Flow_Contraction: the

one across augmenting paths, the one across flow-shifting

paths and the one across reducing paths.

Consider the propagation across aug-rnenting paths.

Consider the total flow that we witt be able to push from

the source throughout these propagations. Since when we

push flow from e* events in 8(Rta)), some events e may

have become unavailable (through deletion) or saturated

(due to flow shifting). Therefore the total flow we can

push in Flow_Contraction is no greater than [f,n.=[in F(R).

Moreover, the set of edges over which the search for

augmenting paths is conducted is always not greater in

each invocation of Flow_Expansion than in the the
application of maximum flow to the entire F(R).
Therefore, the totaI cost of Flow_Expansion is O(E If,,._._l)
Consider now the propagation acr,)ss flow-shifting paths
in Flow_Contraction. Consider an auxiliary flow graph
Shift(R) built as follow: for each _(Ct(i)) consider all edges
in the flow-shitting paths before the application of
Flow_Contraction(F, 5(Cta3) and for each pair of events el
and e2 (including c_ and 'c) add the link with maximum
capacity in some of the flow-shilling paths across all
invocations of Flow_Contraction. I'he total number of
edges in Shift(R) is bounded by 2 E + 2 V, since this is
the maximum number of edges i_ a residual network.
Considering now pushing flow ffo_n an e in _i(C,,)), we
notice that the pipes that are available in Shift(R) are no
smaller than those available in the flow-shifting paths
during the execution of Flow_Contraction. Moreover, the
lengths of the paths is no shorter in Shift(R) than in each
invocation of FlowContraction sinc_ events are not deleted
in Shift(R). Finally, the total flow that can be shifted is no
greater than If,,_x], since this is al_ upper bound of the
maximum amount of flow that reaches "c from some e.
From this argument we can see that the total amount of
work done during the flow-shifting step Row_Contraction
is bounded by O(E]fm_._])-A simikr argument applies to
the flow reduction step in Flow_Contraction with its
complexity again bound by O(E]f,=_]). Therefore the total
cost of Flow_Contraction and Flow_Expansion in
Resource_Envelope is hounded by 30(E If,,=,l).
Considering the other steps in Resource_Envelope, the
sorting step to initialize E is O(V IgV), and the total cost
of Extract_P_max and of incrementally constructing and
deleting the flow network, is 30(E). Under the reasonable
assumption that the asymptotic cos_ of flow computation
dominates O(V lgV), the total cost :)f Resource_Envelope
is O(E If,,_._]), i.e., it has the same _tsymptotic complexity
than running the flow algorithm once over the entire
F(R).

Conclusions

In this paper we describe an elficient algorithm to
compute the tightest exact bound _n the resource level
induced by a flexible activity plan. This can potentially
save exponential amounts of work with respect to looser
bound computations. Future work includes testing the
practical effectiveness of resource envelopes in scheduling
search for problems with multi-calzacity resources. This
includes both direct use as a backtracking and termination
criterion in a constrained based sch,_'duling algorithm for
multi-capacity resources and the additional development
of effective variable and value ordering heuristics based on
resource envelopes.

References

J.C. Beck, A.J. Davenport, E.D. Davis, M.S Fo_. Beyond Contention:
Extending Texture-Based Schedtding Heuristics. in Proceedings of AAA/
1997, Providence, RI, 1997.

A., Cesta, A. Oddi, S.F. Smith, A Constraint-Ba ;ed Method for Resotu'ce
Constrained Proiect Schedulin_ with Time Wind _ws., CMU RI Technical
Report, FeN_aary, 2000.

H. S.F. Cooper Jr.. The Loneliness of the Long-Duration Astronaut. Air &
Space/Smithsmzian. June/July 1996, available a
http://www.airspacema_.congASM/Ma_,_/Index/[9961JJlllda.html

T.H. Cormen, C.E. Leiserson, R.L. Rivest Introduction to A[gorithm,_.

Cambridge, MA, 1990.

R. Dechter, I. Meiri, J. Pearl. Temporal Constraint Networks. Artificial

Intelligence, 49:61-95, May 1991.

P Labor_e. Aigorithms for Propagating Resource Cons_:raints in AI Planning
and Scheduling: Existing Approaches and New Results, Proceedings of
ECP 2001, Toledo, Spain, 2001.

P. Morns, N. Muscettola, T. Vidal. Dynamic Control of Plans with
Temporal Uncertainty, in Proceedings c_f'lJC412001, Seattle, WA, 200J

N. Muscettola. On the Utility of Bottleneck Reasoning for Scheduling. in
Proceedings _?fAAAI]994, Seattle, WA, 1994.

WP.M Nuijten. Time and Resource Constrained Scheduling: a Constraint
Satisfaction Approach. PhD Thesis, Eindhoven University of Technology,
1994.

N. Sadeh. Look-ahead techniques for micro-opportunistic job-shop
scheduling PhD Thesis, Carnegie Mellon University, CMU-CS-91-102,
1991.

[. Tsam,Trdinos. N. Muscettola, P. Morris. Fast Transformation of Temporal
Plans fo_ Efficient Execution. in Proceedings _?fAAA[1998, Madison, Wl,
1998.

